126 research outputs found

    Training with More Confidence: Mitigating Injected and Natural Backdoors During Training

    Full text link
    The backdoor or Trojan attack is a severe threat to deep neural networks (DNNs). Researchers find that DNNs trained on benign data and settings can also learn backdoor behaviors, which is known as the natural backdoor. Existing works on anti-backdoor learning are based on weak observations that the backdoor and benign behaviors can differentiate during training. An adaptive attack with slow poisoning can bypass such defenses. Moreover, these methods cannot defend natural backdoors. We found the fundamental differences between backdoor-related neurons and benign neurons: backdoor-related neurons form a hyperplane as the classification surface across input domains of all affected labels. By further analyzing the training process and model architectures, we found that piece-wise linear functions cause this hyperplane surface. In this paper, we design a novel training method that forces the training to avoid generating such hyperplanes and thus remove the injected backdoors. Our extensive experiments on five datasets against five state-of-the-art attacks and also benign training show that our method can outperform existing state-of-the-art defenses. On average, the ASR (attack success rate) of the models trained with NONE is 54.83 times lower than undefended models under standard poisoning backdoor attack and 1.75 times lower under the natural backdoor attack. Our code is available at https://github.com/RU-System-Software-and-Security/NONE

    NOTABLE: Transferable Backdoor Attacks Against Prompt-based NLP Models

    Full text link
    Prompt-based learning is vulnerable to backdoor attacks. Existing backdoor attacks against prompt-based models consider injecting backdoors into the entire embedding layers or word embedding vectors. Such attacks can be easily affected by retraining on downstream tasks and with different prompting strategies, limiting the transferability of backdoor attacks. In this work, we propose transferable backdoor attacks against prompt-based models, called NOTABLE, which is independent of downstream tasks and prompting strategies. Specifically, NOTABLE injects backdoors into the encoders of PLMs by utilizing an adaptive verbalizer to bind triggers to specific words (i.e., anchors). It activates the backdoor by pasting input with triggers to reach adversary-desired anchors, achieving independence from downstream tasks and prompting strategies. We conduct experiments on six NLP tasks, three popular models, and three prompting strategies. Empirical results show that NOTABLE achieves superior attack performance (i.e., attack success rate over 90% on all the datasets), and outperforms two state-of-the-art baselines. Evaluations on three defenses show the robustness of NOTABLE. Our code can be found at https://github.com/RU-System-Software-and-Security/Notable

    Alteration-free and Model-agnostic Origin Attribution of Generated Images

    Full text link
    Recently, there has been a growing attention in image generation models. However, concerns have emerged regarding potential misuse and intellectual property (IP) infringement associated with these models. Therefore, it is necessary to analyze the origin of images by inferring if a specific image was generated by a particular model, i.e., origin attribution. Existing methods are limited in their applicability to specific types of generative models and require additional steps during training or generation. This restricts their use with pre-trained models that lack these specific operations and may compromise the quality of image generation. To overcome this problem, we first develop an alteration-free and model-agnostic origin attribution method via input reverse-engineering on image generation models, i.e., inverting the input of a particular model for a specific image. Given a particular model, we first analyze the differences in the hardness of reverse-engineering tasks for the generated images of the given model and other images. Based on our analysis, we propose a method that utilizes the reconstruction loss of reverse-engineering to infer the origin. Our proposed method effectively distinguishes between generated images from a specific generative model and other images, including those generated by different models and real images

    Rethinking the Reverse-engineering of Trojan Triggers

    Full text link
    Deep Neural Networks are vulnerable to Trojan (or backdoor) attacks. Reverse-engineering methods can reconstruct the trigger and thus identify affected models. Existing reverse-engineering methods only consider input space constraints, e.g., trigger size in the input space. Expressly, they assume the triggers are static patterns in the input space and fail to detect models with feature space triggers such as image style transformations. We observe that both input-space and feature-space Trojans are associated with feature space hyperplanes. Based on this observation, we design a novel reverse-engineering method that exploits the feature space constraint to reverse-engineer Trojan triggers. Results on four datasets and seven different attacks demonstrate that our solution effectively defends both input-space and feature-space Trojans. It outperforms state-of-the-art reverse-engineering methods and other types of defenses in both Trojaned model detection and mitigation tasks. On average, the detection accuracy of our method is 93\%. For Trojan mitigation, our method can reduce the ASR (attack success rate) to only 0.26\% with the BA (benign accuracy) remaining nearly unchanged. Our code can be found at https://github.com/RU-System-Software-and-Security/FeatureRE

    How to Detect Unauthorized Data Usages in Text-to-image Diffusion Models

    Full text link
    Recent text-to-image diffusion models have shown surprising performance in generating high-quality images. However, concerns have arisen regarding the unauthorized usage of data during the training process. One example is when a model trainer collects a set of images created by a particular artist and attempts to train a model capable of generating similar images without obtaining permission from the artist. To address this issue, it becomes crucial to detect unauthorized data usage. In this paper, we propose a method for detecting such unauthorized data usage by planting injected memorization into the text-to-image diffusion models trained on the protected dataset. Specifically, we modify the protected image dataset by adding unique contents on the images such as stealthy image wrapping functions that are imperceptible to human vision but can be captured and memorized by diffusion models. By analyzing whether the model has memorization for the injected content (i.e., whether the generated images are processed by the chosen post-processing function), we can detect models that had illegally utilized the unauthorized data. Our experiments conducted on Stable Diffusion and LoRA model demonstrate the effectiveness of the proposed method in detecting unauthorized data usages

    FairNeuron: Improving Deep Neural Network Fairness with Adversary Games on Selective Neurons

    Full text link
    With Deep Neural Network (DNN) being integrated into a growing number of critical systems with far-reaching impacts on society, there are increasing concerns on their ethical performance, such as fairness. Unfortunately, model fairness and accuracy in many cases are contradictory goals to optimize. To solve this issue, there has been a number of work trying to improve model fairness by using an adversarial game in model level. This approach introduces an adversary that evaluates the fairness of a model besides its prediction accuracy on the main task, and performs joint-optimization to achieve a balanced result. In this paper, we noticed that when performing backward propagation based training, such contradictory phenomenon has shown on individual neuron level. Based on this observation, we propose FairNeuron, a DNN model automatic repairing tool, to mitigate fairness concerns and balance the accuracy-fairness trade-off without introducing another model. It works on detecting neurons with contradictory optimization directions from accuracy and fairness training goals, and achieving a trade-off by selective dropout. Comparing with state-of-the-art methods, our approach is lightweight, making it scalable and more efficient. Our evaluation on 3 datasets shows that FairNeuron can effectively improve all models' fairness while maintaining a stable utility

    CILIATE: Towards Fairer Class-based Incremental Learning by Dataset and Training Refinement

    Full text link
    Due to the model aging problem, Deep Neural Networks (DNNs) need updates to adjust them to new data distributions. The common practice leverages incremental learning (IL), e.g., Class-based Incremental Learning (CIL) that updates output labels, to update the model with new data and a limited number of old data. This avoids heavyweight training (from scratch) using conventional methods and saves storage space by reducing the number of old data to store. But it also leads to poor performance in fairness. In this paper, we show that CIL suffers both dataset and algorithm bias problems, and existing solutions can only partially solve the problem. We propose a novel framework, CILIATE, that fixes both dataset and algorithm bias in CIL. It features a novel differential analysis guided dataset and training refinement process that identifies unique and important samples overlooked by existing CIL and enforces the model to learn from them. Through this process, CILIATE improves the fairness of CIL by 17.03%, 22.46%, and 31.79% compared to state-of-the-art methods, iCaRL, BiC, and WA, respectively, based on our evaluation on three popular datasets and widely used ResNet models

    Trojaning Attack on Neural Networks

    Get PDF
    corecore